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Consider a system with an arbitrary constraint on its electron density (e.g. that there are N

charges on an acceptor group). We show that the minimum energy state consistent with the con-
straint is actually a maximum with respect to the constraint potential, and that this solution is
unique. This leads us to an efficient algorithm for performing Kohn-Sham density functional the-
ory calculations on constrained systems. Illustrative studies are shown for charge transfer in: the
zincbacteriochlorin–bacteriochlorin complex, polyene and alkane chains, and stretched H2.

In density functional theory (DFT) [1], the ground-
state energy is obtained by the minimization:

E0 = min
ρ

{

F [ρ] +

∫

v(r)ρ(r)dr

}

(1)

where F [ρ] is a universal functional and v(r) is an ex-
ternal potential. The density at the minimum then is
the ground-state density. The foundation laid down
by Hohenberg, Kohn and Levy [1] guarantees the exis-
tence of F [ρ] and the validity of the minimization pro-
cedure. It is important to note that F [ρ] is independent
of v(r), and there are no restrictions on v(r). It was
later shown [2] that by making an appropriate choice
of the external potential, one could use DFT to com-
pute the lowest energy of a system compatible with an
arbitrary density constraint. The resulting constrained
DFT (CDFT) formalism has been useful in describing
charge [3] and magnetization [4] fluctuations in solids,
predicting spin-dependent sticking of molecules on sur-
faces [5], parameterizing model Hamiltonians based on
DFT calculations [6] and characterizing electron transfer
reaction in molecules [7]. The CDFT approach to non-
equilibrium systems should be thought of as a simpli-
fied version of time dependent DFT (TDDFT) [8]. With
TDDFT one can determine all the excited states of the
system, whereas in CDFT one only has access to those
states that are ground states of an alternative external
potential. Now, to obtain the constrained state, one must
first find the particular external potential that has the
constrained state as its ground state. In previous appli-
cations, this has been accomplished by inspection; one
scans over the potential and identifies the value that sat-
isfies the desired constraint. This technique is compu-
tationally intensive and would be prohibitively difficult
in a system with many independent constraints. In this
letter, we provide a novel method that determines the
constrained state directly. Our method, based on the
previous work of calculating the exact Kohn-Sham (KS)
potential from a given electron density [9], performs an
unconstrained maximization to find the correct poten-
tial at each iteration in the self-consistent procedure. At
convergence, it gives precisely the desired state and the
required potential. We then demonstrate the efficiency
of this method for a few electron transfer systems.

In the KS method [10, 11], the electronic energy is
written as: (We assume closed-shell systems and real or-
bitals for now, but it is straightforward to generalize the
following scheme to other cases.)

E[ρ] = 2

N/2
∑

i

〈φi|−
1

2
∇2|φi〉+

∫

drvn(r)ρ(r)+J [ρ]+Exc[ρ],

(2)
where J is the classical Coulomb energy, Exc is the
exchange-correlation energy and vn is the external po-
tential. N is the number of electrons and ρ(r) is the

electron density, ρ(r) = 2
∑N/2

i φ2
i (r), with φi being the

lowest energy orbitals of the reference noninteracting sys-
tem. Now add a general constraint to the density:

∫

C

ρ(r)dr =

∫

wc(r)ρ(r)dr = Nc, (3)

where C represents the constrained part of the system
and wc(r) acts as a weight function that defines the con-
strained property. For example, wc could be 1 inside the
domain of C and 0 otherwise, thus constraining the num-
ber of electrons in the volume C. To minimize the total
energy in Eq. (2) under the constraint Eq. (3), a Lagrange
multiplier, vc, is used to build a new functional:

W [ρ, vc] = E[ρ] + vc

(
∫

wc(r)ρ(r)dr − Nc

)

. (4)

Making W stationary under the condition that the or-
bitals are normalized gives the following equations:

[−
1

2
∇2 + vn(r) +

∫

ρ(r′)

|r − r
′|

dr′ + vxc[ρ](r)

+vcwc(r)]φi = εiφi. (5)

These equations are different from the KS equations be-
cause of the addition of the constraint potential, vcwc(r),
in the effective Hamiltonian. Unfortunately vc is only
known implicitly: the correct vc should make the density
satisfy Eq. (3).

However, for any given vc, Eq. (5) uniquely determines
a set of orbitals. When these orbitals are used to calcu-
late ρ and then W , W becomes a function of vc only. This
is the original idea behind optimized effective potential
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theory [12] and its generalization to potential function-
als [13]. We now show that W (vc) is a strictly concave
function of vc [9]. The first derivative of W (vc) is

dW

dvc
=

∑

i

δW

δφi

δφi

δvc
+

∂W

∂vc
=

∫

wc(r)ρ(r)dr − Nc. (6)

Here the fact that δW/δφi = 0, i.e. Eq. (5), has been
used. The stationary point of W (vc) (dW/dvc = 0) then
restores the constraint Eq. (3) automatically. To deter-
mine the character of the stationary point, one needs to
check the second derivative of W (vc),

d2W

dv2
c

= 4

occ
∑

i

∫

wc(r)φ(r)
δφi(r)

δ[vcwc(r′)]
wc(r

′)drdr′

= 4

occ
∑

i

∫

wc(r)φ(r)
∑

a6=i

φi(r
′)φa(r′)

εi − εa
φa(r)

×wc(r
′)drdr′

= 4

occ
∑

i

unocc
∑

a

〈φi|wc|φa〉
2

εi − εa
(7)

Here first-order perturbation theory is used to evaluate
δφi(r)

δ[vcwc(r′)] . In the final expression, the index i goes over

occupied orbitals, while a only has to go over the unoc-
cupied orbitals because the summand is antisymmetric
with the exchange of i and a. Assuming that the occu-
pied orbitals are chosen as the lowest eigenstates, Eq. (7)
is always non-positive. This implies that there is only
one stationary point and that it is a maximum. Thus by
optimizing W through varying vc, one can find the right
vc that produces the ground state of the constrained sys-
tem. Because both first and second derivatives are easily
calculated, the optimization can be done efficiently.

Like the KS equations, Eqs. (5) have to be solved in
a self-consistent (SC) fashion because both the Coulomb
potential and vxc depend on ρ. At each SC iteration,
a set of input φi, either from an initial guess or from
the output of previous iterations, is used to construct
the conventional KS Hamiltonian. With an initial value
of vc, vcwc(r) is added to form the full Hamiltonian in
Eq. (5). Then an optimization of vc is carried out by
repeating these steps: (i) solve Eq. (5); (ii) calculate the
derivatives according to Eq. (6) and (7); and (iii) up-
date vc with an optimization scheme, such as Newton’s
method. The optimization of vc is complete when the
constraint, i.e. Eq. (3), is satisfied. The φi correspond-
ing to the optimal vc can be used as input for next SC
iteration. At convergence, this process yields both the
ground state of the constrained system and the neces-
sary potential to maintain the constraint. In addition
to the internal energy of the constrained system (E[ρ]),
one can also consider the “free energy”, F = E[ρ]+vcNc,
which represents the energy of the system in the presence
of the constraint. From the Hellmann-Feynman theorem,
we have the thermodynamic relations

dE(Nc)

dNc
= −vc and

dF (vc)

dvc
=

∫

wc(r)ρ(r) = Nc, (8)

which reflect the fact that while E is a natural function
of Nc, F is a natural function of vc. From the variational
principle, the internal energy of the constrained system is
always higher than the unconstrained one, and the differ-
ence between these energies reflects the energy required
to enforce the constraint.

Eq. (3) can be used to enforce a variety of constraints,
leading to various interesting applications. Instead of
the total number of electrons in C, one can constrain
the number of d or f electrons, which is important in
studies of metal impurities [2] and superconductivity [6].
One can also constrain the difference between the num-
ber of alpha and beta electrons on the same atom so as to
study the change of local magnetic moments [14]. Alter-
natively, one can constrain the charge difference between
two separated parts of the system, and this is useful to
study charge transfer (CT) reactions [7]. In the present
work, we focus on charge transfer. Therefore, there is an
electron donor (D) in the system, which should give up
electrons, and there is an electron acceptor (A), which
should gain electrons. If ND and NA stand for the net
charges on D and A, we then constrain the difference
Nc = (ND − NA)/2. This can be done in Eq. (3) by
defining the weight function wc(r) to be positive on the
donor and negative on the acceptor.

We have implemented our method in NWChem [15].
There are, of course, many different ways of defining the
charge on an atom within a molecule, and we have imple-
mented five of them: Mulliken population, Löwdin pop-
ulation, atomic-orthogonalized Löwdin population [16],
the real space weight function as suggested by Becke [17],
and the Voronoi cell method [18]. We find that Mulliken
populations are often qualitatively incorrect, often giving
negative populations once the constraint is established.
The other four methods all give similar results for sys-
tems discussed in this work. In what follows, we use
Löwdin population analysis.

As a first example, consider intermolecular charge
transfer in the zincbacteriochlorin–bacteriochlorin
(ZnBC–BC) complex [19]. There are two low-lying
CT states: ZnBC+–BC− and ZnBC−–BC+. TDDFT
calculations are known to give too low energies for these
states [20]. Moreover, their potential energy curves as
a function of the intermolecular distance, R, do not
exhibit the correct 1/R dependence due to the lack of
particle–hole interactions in the excited states [20]. We
have used the same structure of (1,4)-phenylene-linked
ZnBC–BC complex and the model complex as in Ref.
[20]. For the model complex, we use our constraint for-
malism to calculate the energies of the lowest CT states
at different distances between the separated subunits,
starting from 5.84 Å as in the linked complex up to 9.0
Å. Energies are calculated using the BLYP functional
[21] and the 6-31G* basis set. The difference between
the energy of the CT state and that of the ground
state of the model complex at 5.84 Å shows a linear
relationship against the inverse of the distance (Fig. 1a)
as it should be. The last point of each line represents
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the CT state excitation energy of the model complex
at the distance of the linked complex. These energies
are 3.79 eV (ZnBC+–BC−) and 3.94 eV (ZnBC−–BC+),
comparing to 3.75 eV and 3.91 eV, respectively, as
calculated by the hybrid method in Ref. [20]. The
corresponding CT state excitation energies for the linked
complex are 3.60 eV and 3.71 eV as calculated by our
method. Thus by doing only constrained ground-state
DFT calculations, we are able to obtain a good picture
of the lowest energy states of long-range charge transfer,
which has been problematic for TDDFT. Of course,
TDDFT also calculates the excited states higher in
energy, while our method only gives the lowest energy
state for a specific charge transfer. But our method can
also be used to calculate states with partial charges, and
therefore analyze the whole process of charge transfer.
Examining the relation between the applied potential
and the charge (Fig. 1b), we see two nearly parallel
lines separated by a vertical jump at the zero charge
point. This is understandable because the two subunits
of this complex are quite far from each other (5.84 Å).
A sufficiently large force has to be applied to initiate the
charge transfer from either one to the other. When the
subunits are infinitely far apart, the magnitude of this
force is the difference between the ionization potential
(IP) of the electron donor and the electron affinity (EA)
of the acceptor, and the graph in Fig. 1b will become two
horizontal lines separated by a gap of (IPZnBC-EABC)
+ (IPBC-EAZnBC). This is a clear manifestation of
the derivative discontinuity of the exchange-correlation
functional [22]. It is very difficult to account for these
discontinuities in standard DFT, leading to a number of
fundamental weakness (e.g., the “Band Gap Problem”
[23]). It is therefore very encouraging that a constrained
ground state is able to capture this elusive effect.
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FIG. 1: (a) The lowest CT-state energies of the ZnBC–
BC model complex at different distances as compared to its
ground-state energy at 5.84 Å. Lower line: ZnBC+–BC−. Up-
per line: ZnBC−–BC+. (b) Applied potential vs. charge
transfer for the model complex at 5.84 Å.

Next we consider CT in polyenes (CnHn+2) and alka-
nes (CnH2n+2). The constraint is imposed on the end
groups (=CH2 for polyenes and -CH3 for alkanes) and
the charge is transfered from one end (donor) to the other
(acceptor) in the molecule. All geometries are optimized
with the B3LYP functional [24] and the 6-31G* basis set.
Fig. 2 shows the potential–charge curves for C6H8 and
C6H14, where we see nearly linear response for C6H8 all
the way to one charge transfered, but a significant deflec-
tion for C6H14. This indicates that the polarizability of
C6H8 remains almost the same for the whole CT process,
while that of C6H14 changes abruptly upon increasingly
applied potential. To make sure that the deflection is
not an error of DFT, we seek help from coupled-cluster
(CC) methods [25]. For CC calculations, we do not have
the same optimization procedure as in DFT to calculate
vc. Instead, we apply an external potential vcwc(r) ex-
plicitly and calculate the free energy of the perturbed
system for various values of vc. We then calculate Nc

by finite difference according to Eq. (8). We have done
singles and doubles coupled-cluster (CCSD) [26] calcula-
tions on C4H9F [29], and compared the potential–charge
curve to B3LYP results as shown in Fig. 3. It is clear
that the deflection remains, though in a different posi-
tion from B3LYP results, and we therefore conclude that
this is not an artifact of DFT. By plotting the density
at various vc values and monitoring the changes of the
density between consecutive points, one can actually see
a sudden change of the electron density, corresponding
to the kink in the line. Further studies on this point will
be reported in later work [27].
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FIG. 2: Applied potential vs. charge transfer for C6H8 (dots)
and C6H14 (triangles).

So far the systems have been closed-shell and the cal-
culations have all been done with restricted KS (RKS).
The results presented previously are not qualitatively al-
tered by using an unrestricted KS (UKS) reference. As
the last example, we pick a system that is known to be
poorly described by RKS — the stretched singlet hy-
drogen molecule. We set the bond length between the
two hydrogens as 3.5 Å. At such a distance, the true
wavefunction has one electron on each atom. RKS has
both electrons shared by both centers, which is clearly
wrong. UKS is able to give the correct density picture,
but suffers from spin contamination. For charge trans-
fer between these two separated subunits, we expect to
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FIG. 3: Applied potential vs. charge transfer for C4H9F.
Dots: B3LYP. Triangles: CCSD.
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FIG. 4: Applied potential vs. charge transfer for stretched H2.
Circles: restricted B3LYP. Triangles: unrestricted B3LYP.
Squares: CCSD.

see a picture similar to Fig. 1b; an initial barrier due to
the energy gap between H− and H+ must be overcome
before charge transfer starts. This process is correctly
described by CCSD calculations as seen in Fig. 4. The
RKS results are clearly wrong. Charge transfer occurs
even for a small bias and increases linearly with the ap-
plied potential. UKS calculations do have the initial bar-
rier, which argues in favor of UKS for this case. However,
compared to CCSD results, the barrier is too small, and
the ensuing charge transfer acts in the same way as RKS.
Hence, we conclude that existing functionals (restricted
or unrestricted) are not sophisticated enough to deal with
CT in diradical systems.

In conclusion, we have presented an efficient DFT
method to study constrained systems. This method
directly optimizes the required potential to establish
the constraint while solving the KS equations self-
consistently. The charge transfer studies presented here
demonstrate the efficacy of this approach and the wealth
of information it provides. Extensions of this method to
various aspects of charge and magnetization fluctuations
should be equally fruitful.
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